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ABSTRACT 

The k-plane Radon transform assigns to a function f (x)  on R n the col- 

lection of integrals ](~-) = f~ f over all k-dimensional planes ~-. We 
give a systematic t reatment  of two inversion methods for this transform, 

namely, the method of Riesz potentials, and the method of spherical 

means. We develop new analytic tools which allow to invert ](~-) under 

minimal assumptions for f .  It is assumed tha t  f E L p, 1 < p < n/k,  
or f is a continuous function with minimal rate of decay at infinity. In 

the framework of the first method, our approach employs intertwining 

fractional integrals associated to the k-plane transform. Following the 

second method, we extend the original formula of Radon for continuous 

functions on ~2 to f C Lp(]~n) and all 1 < k < n. New integral formulae 

and estimates, generalizing those of Fuglede and Solmon, are obtained. 

1. In troduct ion  

Let ~n,k be the manifold of affine k-dimensional planes T in R n, 1 < k < n. 

The k-plane Radon transform of a function f(x) on It~ n is defined by ](T) = 

f~ f(x)d~x where d~x denotes the Lebesgue measure on T. The present article 

is motivated by our intention to fill in some gaps in two inversion methods (see 

1 ° and 2 o below) described in the celebrated 1917 paper by J. Radon [R]. The 

first method is called the method of Riesz potentials, and the second one the 
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94 B. RUBIN Isr. J. Math. 

method of spherical means. These methods are also given different names; see, 

e.g., [Rou2]. Let us pass to details. 

1 °. On a formal level, traditional inversion formulas for ] read 

(1.1) f : Cl(--Ax)k/2(]) V, f : C2((--A~.)k/2]) V, 

where Ax and A~ denote the corresponding Laplace operators, and ,v,, stands 

for the dual k-plane transform. An idea of this approach was communicated to 

J. Radon by W. Blaschke; see [R], Sec. B(5). The first formula was presented 

in [H2, p. 29] under the following assumptions: 

(a) f E C~(~n);  (b) f(x) -= O([xl -a) for some a > n. 

The second formula can be found in [H2, p. 18] (for k = n - 1 and f belonging to 

the Schwartz space S(~n)),  in [SSW, p. 1260] (for k = n - 1, f E L2(]~n)), and 

in [Ke, p. 287] (for 1 < k < n - 1 without rigorous justification). On the other 

hand, ](v) is well defined under much weaker assumptions. Namely, it exists 

for all ~- if f ( x )  is continuous and O(Ixl-a), a > k. Moreover, ](7) is finite for 
almost all v if f E LP(I~n), 1 _< p < n/k .  The restrictions a > k and p < n / k  are 

sharp in the framework of the corresponding function spaces [So]; see also [Str]. 

Our aim is to study applicability of (1.1) under these minimal assumptions by 

making use of appropriate subtle tools of real analysis. Some results in this 

direction were obtained by S. R. Jensen [J]. She studied applicability of the first 
formula in (1.1) to sufficiently smooth functions f by interpreting ( -Ax)  k/2 as 

analytic continuation of the corresponding Riesz potential (1.5). Our approach 

is different and covers both smooth and non-smooth cases. 

2 °. Following P. Funk's idea, Radon [R] employed invariance of the hyper- 

plane transform (the case k = n - 1) under isometries of I~ n and reduced the 

inversion problem for ] to the one-dimensional Abel integral equation; see [R], 

Sec. C(6) and [Ru9], Sec. 2, for historical comments. The idea was to average 

](T) over all planes 7 at distance r > 0 from x, and then apply the Riemann- 

Liouville fractional derivative in the r-variable. This gives the spherical mean 

of f that tends to f as r --+ 0. The same idea was applied by S. Helgason 

to k-dimensional totally geodesic Radon transforms of compactly supported 

C °° functions on the hyperbolic space ]E n and the unit sphere S n [H1, H2]. F. 

Rouvi~re [Roul] extended these results to compactly supported C a functions on 

arbitrary rank one symmetric space of the non-compact type. By making use of 

real variable methods, B. Rubin [Ru3, Ru4] obtained explicit inversion formulas 

for the above-mentioned totally geodesic Radon transforms in the framework of 

L p functions and continuous functions having no support restrictions. 
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The famous inversion formula of Radon for continuous functions on l~ 2 reads 

o o  

1 / dF~(r) 
(1.2) f ( x ) =  7r r 

0 

where Fx (r) is the average of ] over all lines at distance r from x. The integral 

in (1.2) is understood in the Stieltjes sense or as a limit 

o o  

(see [R, Proposition III]). The core of this elegant formula is that  it does not 

assume differentiability of Fz (r). To the best of my knowledge, no analog of 

(1.2) preserving this important feature seems to be known for all 1 _< k < n 

and non-smooth f ,  say, f E L p. This generalization is obtained in the present 

paper. 

The plan of the paper and main results are as follows. Section 2 is of pre- 

liminary character. Here we derive new integral formulae, generalize some esti- 

mates of Solmon [So], and introduce important mean value operators. In Sec- 

tion 3 we explore analytic families of intertwining fractional integrals (Pal)(v), 

(/~ ~ ) ( x ) .  For a = 0, they coincide with the k-plane transform and its dual; 

see (3.4), (3.2). These families were introduced by Semyanisty~ [Se] for k = n -  1 

and by the author [Ru8] for all 0 < k < n. Similar families associated to totally 

geodesic Radon transforms on S n and IE n were introduced in [Ru4, Ru5]. The 

main result of Section 3 is the following equality: 

(1.3) P ~P~f = Ck,nla+f~+kf (the Riesz potential of f ) ,  

which generalizes the well known formula of Fuglede (])v = Ck,nikf; see [F], 

[H2, p. 29]. Section 4 contains a series of inversion formulas related to (1.1) and 

derived under minimal assumptions for f .  The structure of these formulae is 

inspired by (1.3). 

Section 5 is devoted to the method of spherical means. Main results are stated 

in Theorem 5.4 and Corollaries 5.3, 5.6. In particular, for the X-ray transform 

(the case k = 1), we obtain the following inversion formula: 

Oo i/ lxljrlXl r 
(1 .4 )  f ( x )  = = ], 

0 
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which can be regarded as a substitute for Radon's formula (1.2). Here ¢(x) (the 

dual k-plane transform of ~) is the integral of ~(T) over all k-planes ~- through 

x, and Cr(x) denotes the mean value of ~(T) over all k-planes at distance r from 

x. The map ~ -+ ~r(x) is also called the shifted dual Radon transform [Roul], 

[Rou2]. 

The expression (1.4) is understood as a limit 

o o  o o  

l limTr ~-~o j f (v(x)r?r(x)dr= l limTr ~-~o ((v~x) / ~r(X)r2 drY] 
E 

in a suitable sense, and coincides (up to notation) with (1.2) because 

O r(x ) lim 
Or s-+0 

We see that Radon's formula remains unchanged for all n provided k = I. 

Theorem 5.4 generalizes (1.4) to all 1 < k < n. It is worth noting that for the 

hyperbolic space ~ and the unit sphere S n, analogs of (1.4) have the same 

structure [Ru3], namely, 

oo 

1 / ¢(x) - coshrdT, x e 
f(x) = 7r sinh 2 r 

0 
~r/2 

f(x) -- ~(x)2____~ + -~1 / ~(x)=~r(X)sin 2 r cosrdr, x • S n. 
o 

In the present paper, we are not concerned with such important questions as 

range characterization, support theorems, the Fourier transform approach, the 

convolution-backprojection method, and other important topics. More informa- 

tion and further references can be found in the books [GGG], [Ehr], [H2]; see 

also related papers by A. D'Agnolo lag1], [Ag2], A. B. Goncharov [Gon], F. B. 

Gonzalez [Gonzl], [Gonz2], A. Katsevich [Kal], [Ka2], [Ka3], E. E. Petrov [Be1], 

[Be2], F. Richter [Ri], the author's papers [Ru6], [RUT], [Ru8], and references 

therein. 

ACKNOWLEDGEMENT: I am grateful to Professors Evgenyi E. Petrov and 

Fran§ois Rouvi~re for useful discussions and sending me their papers. Special 

thanks go to both referees for valuable remarks and suggestions. 

Notation: In the following an-1 = 27rn/2/F(n/2) is the area of the unit sphere 

S n-1 in ~n; el , .  • . ,  en are coordinate unit vectors; 

]I{ k = ]~el + "" + ]~ek, If{ n-k = ~ek+~ + "" + ~e~. 
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For the sake of convenience, we denote by I x - v I the euclidean distance between 

the point x E l~ n and the k-plane T. This notation is not confusing, and agrees 

with the usual definition Ix - Yl for x, y E ~n. 

The notation C, C m, C ~,  L p for spaces of functions on ~n is standard; 

Co = { f  E C(]~ n) : l i m l x l _ ~ f ( x  ) = 0}. (I) = (I)(~ n) is the Semyanisty~- 

Lizorkin space of rapidly decreasing C~-functions which are orthogonal to all 

polynomials (see [Se], [SKM]). The Riesz potential I " f  on II~ n is defined by 

1 / f(y)dy 2 ~ / 2 F ( a 1 2 )  
(1.5) (I~f)(x) - 7n(a~ Ix - yl ~ -~ '  "Y~'~ = F((n - a) /2)  ' 

R e a  > 0, a - n ~ 0 ,2 ,4 , . . . .  The operator I ~ is an automorphism of ~, and 

F[Iaf](x) = Ixi-~F[f](x) for f E (I) in the Fourier terms. The last relation 

extends I a f  to all a E C as an entire function of a. For a real and f E L p, 
the integral I a f  exists a.e. if and only if 1 <_ p < n/(~, and IlIafiiq <_ c]lfiip for 

1 < p < q = np(n - a p ) - i  [St]. The Riemann-Liouville fractional integrals are 

defined by 

(1.6) (I~_u)(t) - F(a) (t -:~) 1-adr' (Ia-u)(t) = F'(c~) ( r - ~  1-adr' 
o t 

Re a > 0. More information about Riesz potentials and fractional integrals can 

be found in [Rul], [SKM]. The letter c stands for a constant that  can be different 

at each occurrence. Given a real-valued expression A, we set (A)~ = A ~ if A > 0 

and 0 if A < 0. 

2. Some properties of  k-plane transforms 

We recall basic definitions. Let Gn,k and Gn,k be the a]:fine Grassmann manifold 

of all non-oriented k-planes T in R n , and the ordinary Grassmann manifold of k- 

dimensional subspaces ~ of ~ ,  respectively. Each subspace ~ E G**,k represents 

a k-plane passing through the origin. The group M(n)  of isometries of Rn acts 

on G.,k transitively. Each k-plane ~- is parameterized by the pair (~, u) where 

E Gn,k and u E ~± (the orthogonal complement to ~ in R~). The manifold 

G~,k will be endowed with the product measure dr = d~du, where de is the 

SO(n)-invariant measure on Gn,k of total mass 1, and du denotes the usual 

volume element on ~±. 

The k-plane transform ](T) of a function f (x)  and the dual k-plane transform 
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~(x) of a function ~(T) -- ~0(~, U) are defined by 

(2.1) = e 6n,k; 

(2.2) @(x) = / ~o(7{o + x)d7 = / ~o({,Pr;. x)d~, 

SO(n) a~,k 

x 6 ~  n. 

Here Pr;z x denotes the orthogonal projection of x onto ~±; ~0 is an arbitrary 
fixed k-plane through the origin. We denote 

(2.3) (/1,f2) = / f l ( x ) f 2 ( x ) d x ,  (~l,~P2) ~ - -  / ~1(7)~2(7)dT. 

An important duality relation for (2.1) and (2.2) reads 

(2.4) (], ~)~ = (f, ¢) 

provided that either side is finite for f and ~ replaced by If[ and [~[, respectively 
[H2, So]. 

LEMMA 2.1: For x 6 •n and -r -- (~, u) 6 6n,k, let 

(2.5) r ---- Ixl = dist(o,x), s = lul = dist(o, r) = Irl 

denote the corresponding distances from the origin. If f (x) and ~(T) are radial, 
i.e. f (x)  -- fo(r) and ~(T) =_ ~o(S), then ](T) and ~(x) are represented by Abel 
type integrals 

oo 
(2.6) ](r) = ak-1 f fo(r)(r 2 -- s2)k/2-1rdr, 

8 

(2.7) ¢(x) - ak-lffn-k-lffn_lr n-2 ] ~Po(s)(r2 _ s2)k/2_l sn_k_l d8, 

0 

provided that these integrals exist in the Lebesgue sense. 

Proof: We s e t x = t w + s O ; t , s > 0 ; w 6 ( n S  n - I , o 6 ( ± D S  n-1. Then (2.1) 
reads 

o o  o o  

/(T) ---- f t k - ld t  f fO('t~d-~-sODdo2 :(Tk- 1 ftk-lfo(~/-~'~-s2)d'. 
0 ~AS ~-I 0 
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This gives (2.6). Furthermore, 

¢(x) = f ~o(I pr¢~ ~l)d~ = f ~o(I Pr~-~ xl)d~ 
G..k SO(n) 

- an-ll f ~ 0 ( I P r ~ - k r a l ) d a ,  r = Ix l -  

By passing to bi-spherical coordinates a = a cos ¢ + b sin ¢,  

a E S k-1 C ~k, b c=: S n-k-1 C ]~n-k, 0 < ¢ < 71/2, 

da = sin n-k-1 ¢ cos k-1 Cd~,dadb [VK, pp. 12, 22], we obtain 

~(X) -- ~k-lO'n-k-lo'n-1 / ~0(r s ine )  sin n-k-1 ¢cos  k-1 ¢d¢ .  

0 

This coincides with (2.7). I 

Example 2.2: The following useful formulae for Radon transforms ( ^ > ) and 
the dual Radon transforms ( v> ) can be obtained from (2.6) and (2.7) by 
elementary calculations. We denote 

h i -  ~/~r(~/2) ~2 = r(~/2)r(~/2) 
r((~ + k)/2)' r((a + k)/2)r((n - k)12) 

Then for Re a > 0 and a > 0, we have 

(2.s) Ixl -"-k -% ~1~1 -",  

(2.9) (1 + Ix12) -(~+k)/2 - ~  AI(1 + I~1~) -~/2,  
x 2 a/2-1 (2.10) ( a2 --I I )+ - %  /~l(a 2 -I~1~)~ ~+k)/~-~, 

(2.11) [T[ ~+k-~ ~ A2Ixl ~+k-~, 

(2.12) ( N 2 -  '+ ([x[2 - 
iT[n_k_2 ~ A2 ix]n_2 , 

I~l-+k-~ Ixp+k-n 
(2.13) (1 + N2)(a+k)/2 - -~ )~2 (1 + Izp)~/2" 

The last formula is especially important ,  and we present its proof (all the rest 

are left to the reader). Let 

]7] a+k-n a k - l a n - k - 1  
~o(~-) = (1 + I~-I~)(~+k)/2' c - ~,~-~ 
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Then (2.7) yields 

r 

C / (r 2 -- 82)k/2-18 ee-1 
~(x)- r--2 [ i ~ - ~  ds 

o 
I+r  2 

c f (1 + r 2 - t) k/2-' (t - 1) a/2-1 
- 2r~_ 2 t(~+k)/2 dt 

1 
_ zrk/2gn-k-lP(a/2) r~+k -n 

an_tF((a + k)/2) (1 + r2) a/2 

r ( ~ / 2 ) r ( . / 2 )  r ~+~-~ 
r ( (~  + k) /2) r ( (~  - k)/2) (1 + ~ ) ~ n "  

Combining (2.8)-(2.13) with the duality (2.4), we obtain the following equal- 
ities that give precise information about behavior of 9}(0-) and @(x). 

THEOREM 2.3: For Rea > 0 and a > O, 

f f (2 .14)  ~(X)[x[dax_.k---- ~ - -  ~1 ~(0-) IT[---" ~ ,  

(2.15) /q5(x)-(l dx = A1 f ~(0-) do- + IXl2)(a+k)/2 (1 + [0-[2)./2' 
R ~ g,,,k 

(2.16) S e(x)(a2 - Ixl~)~n-'dx =/~1 S ~P(0-)(a2 --lo-12)(~+k)/2-1d0-' 
Ixl<a I~l<a 

(2.17) / ](0-)H"+}-~dT = A2/f(x) 'x]~+k-ndx,  

(10"12 -- a2)a/2-1 (tXl 2 --  a 2 ) ( a + k ) / 2 - 1  

[~l>a [ml>a 

10-la+k-n / f (x)  (1 + Ixl2)a/2 (2.19) / ](0-)(1 + I0-[2)(a+k)/2 dT = As dx, 
~,,,~ R '). 

provided that either side of the corresponding equality exists in the Lebesgue 
sense. 

COROLLARY 2.4: If f E L p, 1 <_ p < n/k, then ](v) is finite for almost all 
T E Gn,k. I f p  > n /k  and f(x) = (2 + Ixl)-n/p(log(2 + Ixl))-1(e LP), then 
] (0 - )  = o 0 .  
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Proo~ By Hhlder's inequality, the right-hand side of (2.19) does not exceed 

AA211fllp where 

oo 

[xl(~+k-n)P' dx = an-1 r2)~p,/2 dr AP' = (1 + IxI2)~P'/2 (1 + 
R ,~ 0 

(1/p + 1/p' = 1). For 1 _< p < n/k and a > n/p - k, this integral is finite, 

and therefore the left-hand side of (2.19) is finite too. It follows that the Radon 

transform ](r) is finite for almost all r E 6n,k. The second statement follows 

from (2.6). | 

Remark 2.5: 
is different and based on the estimate 

/ I](r)ldr / If(x)ldx V h > 0 .  
(2.20) (1 + Irl) n-k+~ <- c (1 + IxD ~-k' 

~,~,k R '~ 

Below we obtain more informative inequalities. Let a > 0,/~ e IR, 

u(,-) = H~+k-n(1 + I~-I) -~, v(x) = [x[~-k-"(1 + [x[)-e, 

( 1 +  Ill) -a if a </~, 
4 ( x ) =  ( l + [ x l )  - e  i f a > f l ,  

(1 + Ix l ) - e  log(2 + [xD if ~ = fl, 

(1 + [rl) -~ if a < fl, 
~(r) = ]r]~-~(1 + Irl)-e if a > fl, 

(1 + Irl) - z  log(2 + 1/17[) if a = ~. 

LEMMA 2.6: For nonnegative functions f and qo, 

(2.21) f ](r)u(r)dr <_c f f(x)fi(x)dx, 

(2.22) f e(x)v(x)ax < f 
R ~ ~,~,k 

The statement of Corollary 2.4 is due to Solmon [So]. His proof 

Note that  (2.21) implies Solmon's estimate (2.20) if ~ > a = n - k. 

Proof." Let us prove (2.21). We replace q0(T) in (2.4) by the weight function 

u(r) ,  and make use of (2.7). This gives 

1 

ft 
, - l (1  _ t 2 ) k / 2  - 1  

(2.23) qa(x) --- clxl"+k-~¢(lxl), ¢ ( r )  --- ~ +-r-~- dt. 
o 
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If r -> 0 then ~(r) ~ const ~ 0. For sufficiently large r, the desired estimate 

follows from known properties of hypergeometric functions, or can be easily 

obtained by setting 

1/r 1/2 1 

0 1/r 1/2 

and estimating each integral. To prove (2.22) we set f(x) = v(x) in (2.4) and 

make use of (2.6). We get 

f(T) = c / r~-k-a(1 + r ) -~ ( r  2 -- s~)k/2-1rdr = cs-aC(1/s), 

8 

being the same as in (2.23). This gives what was required. I 

Let us introduce important mean value operators. 

Definition 2.7: F o r r  >_ 0, x E ll~n,T= (~,u) E 6n,k, ~ E Gn,k,U E 4 ± , we 

define 

]~(T) -- 1 f dw f f(rw + u + v)dv 
O n _ k _  1 

¢±nS ,~-a ¢ 

(2.24) _ 1 f ](~, u + rw)dw, 
O'n_k_ 1 J 

= f ~o(~/I~ k +x  +r~/en)d3, = / ~o(3'T~ +x)d% (2.25) ¢~(x) 
. I  

SO(n) SO(n) 

Tr being an arbitrary fixed k-plane at distance r from the origin. 

The integral (2.24) can be regarded as a mean value of f(x) over all x at 

distance r from the k-plane r. If r = 0 then f~(v) coincides with the k-plane 

transform f(T). The integral (2.25) averages ~(?-) over all T at distance r from x, 

and coincides with the dual k-plane transform ¢(x) if r = 0. Clearly, operators 

f (x)  -'~ it(T), ~)(T) ~ Cr(X) commute with the group M(n)  of isometrics of 
l~ n . 

Let us consider intertwining operators of the form 

(2.26) (W f)(?-) = / f(x)w([x - ?-I)dx, 

(2.27) (W*~)(x) = / ~(?-)w(Ix ?-[)dr, I 

~n,k 
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where w(.) is assumed to be sufficiently good. If v = (~, U), U E ~i, then 

(Wf)(T) = f ](~ '  v)w(lu - vl)dv, 
, i  ¢± 

and therefore, for f E LP,p > 1, the integral (2.26) is well defined only if 

p < n/k; cf. Corollary 2.4. In (2.27) it suffices to assume ~ e L~oc(6n,k). 

LEMMA 2.8: The following representations hold: 
O 0  

(2.2s) (wI)(T) =  n-k-1 / 
f *  

rn--k-lw(r)]r(T)dr, 
, I  

0 
O 0  

(2.29) (W* ~) (x) : O'n-k-1 / rn-k-lw(r)Cpr (x)dr. 
i 1  

* )  

o 
It is assumed that either side of the corresponding equality exists in the Lebesgue 
sense. 

Pro@ For T = (~, U) E Gn,k, we have 
O 0  

(Wf)(T) = / w ( [ u - v [ ) ] ( ( , v ) d v - -  fw( r ) rn -k - ldr  / ](~,u-ra)da.  
~J- 0 S~-k-1 

By (2.24), this gives (2.28). In order to prove (2.29), let TO = ]~k, q0z(T) = 

~(T + X), b(T) = qOx(T)W([T[) , b(T) = b(~,u). Then 

G~.k Cz SO(n) -rR "*-~ 
O(3 

= f du f b(~/To,~/u)d~/= f r n - k - l d r  f dw f b(~/To,r~/w)d~/ 
R n-~ so(n) o s ~-k-1 so(n) 

O 0  

= (Tn_k_l / rn-k- ldr  / 

o SO(n) 

o being the origin of I~ n . Since 

 r(o) = f 
SO(n) 

we are done. | 

O 0  

~z(TTo + rTen)w(17To + rTenl)d7 = w(r)(gr(x) 

b(TTo + r~/en)d') ' = O ' n - k - 1  /rn-k-lDr(o)dr, 
o 
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3. A n a l y t i c  famil ies  a s soc ia t ed  to  t h e  k-p lane  t r a n s f o r m  

Example 2.2 and duality (2.4) give rise to six equalities (2.14)-(2.19). Let us 

focus on (2.17). We replace f by the shifted function f~(y) = f ( x  + y) and get 

1 i 71~+k-ndr r(~/2) ](~)lx - 

(3.1) gn,~ 
r(n/2) S -r((n - k ) /2 ) r ( (~  + k)/2) S(y)ix - yl~+k-ndy, Rec~ > 0. 

The right-hand side resembles the Riesz potential (1.5). Denoting 

1 I (3.2) (t; ~ ) ( x )  - ~ - k ( ~ )  ~(~)lx - rl~+k-ndr, 

R e a  > 0, a + k - n 7! 0 ,2 ,4 , . . . ,  from (3.1) and (1.5) we obtain 

(3.3) D <~] = Ck,nS~<+kf, ck,~ = ( 2 ~ ) % n - k - , / ~ n - i ,  

provided that  either side of (3.3) exists in the Lebesgue sense (e.g., for f E 

LP(II~n), 1 < p < n(a + k)- l ) .  By duality we define 

1 S rl~+k-'~dx" (3.4) (P~I)(r)- ~ - k ( ~ )  I(X)Ix-- 
R~ 

Operators (3.4) and (3.2) can be represented as 

(3.5) P ~ f  ~ ^ = s~_~S, s; ~ :  = "s ~ "'J t ~-k~ °) , 

where for "r = (~, u), I~_ a denotes the Riesz potential on ~± in the u-variable. 

For sufficiently good f and ~o, 

(3.6) lim P " f  = ], lim /~ a~  = ~. 
c~--+0 c~--+0 

This can be easily seen if we represent P ~ f  and /~  ~o according to (2.28) and 

(2.29), respectively. Thus we can extend definitions (3.4) and (3.2) to c~ = 0 by 

setting pOf = ] , /~  0~ = ¢, and obtain analytic families {pa} and {/~ ~} which 

include the k-plane transform and its dual. The equality (3.3) generalizes the 

known formula of Fuglede 

(3.7) (])v = Ck,nikf 

[F], [H2, p. 29] to Re a > 0. 
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THEOREM 3.1: Let f E L p, 1 < p < n(o~ +/~ + k) -1, a >_ O,/~ >_ O. Then 

(3.8) P ~ P ~ f  = Ck,nla+~+kf, Ck,n : ( 2 7 r ) k ( ; r n - k - 1 / O ' n - 1  • 

Proof: By (3.3) and (3.5), 

~ , ' n - k . /  ] \ n - k  n - - k S :  - -  a p / 3  f .  II 

Remark 3.2: If f belongs to the Semyanistfi-Lizorkin space • (see Notation), 

then (3.8) extends to all complex a,/3. This follows from (3.5) and the equality 

(Ig_-kk/) v = ca,nlaf, a • C, which was proved in [Ru2, Theorem 2.61 using the 

Fourier transform technique. 

4. Inversion of k-plane t ransforms.  The  m e t h o d  of Riesz potent ia ls  

Throughout this section 

ck,~ = ( 2 ~ ) % . - k - 1 / ~ . - 1 .  

Equalities (3.8) and (3.5) give a family of inversion formulae: 

(4.1)  c ,.f I t ;  ^ = I~_k f  Va,/3 • C 

(at least formally). For f • ¢, (4.1) is well justified (see Remark 3.2). In the 

general case we are faced with the following questions. What choice of a and 

/~ is preferable? How to represent operators in (4.1) constructively and recover 

f ( x )  pointwise for all or almost all x? To answer these questions we employ 

appropriate tools of fractional calculus and singular integrals. 

4 . 1 .  T H E  CASE o~ = /3 = 0. In this case (4.1) reads 

(4.2) ck,nf = Dk~, • = f ,  

where D k = [ - k  = (_•)k/2 denotes the Riesz fractional derivative, A being 

the Laplace operator. Thus the problem is how to invert the Riesz potential 
- 1  v ? g = I k f  (in our case g = Ck,n~ ) . Numerous investigations are devoted to this 

question; see [Rul, SKM] and references therein. 

4.1.1. Hypersingular integrals. Below we review some results in the context of 

their application to the k-plane transform. Let us consider finite differences 

j=O 

= ( - 1 ) , g ( x  - v y), 
j=O 
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and normalizing constants 

(4.3) 
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(1 - e ~ l ) e  
d~,e(k) = ~[h--~ dy (yl is the first coordinate of y), 

R~ 
DO 

~r n/2 f (t - e-t) m 
(4.4) d~,m(k) = 2kC((n + k)/2) j -~+---U~ tit. 

0 

We assume f = k if k is odd, and any f > k if k is even; m > k/2. Integrals 
(4.3), (4.4) can be evaluated explicitly, and the following statement holds [Rul, 
pp. 238, 239], [SKM, Section 26]: 

THEOREM 4.1: Let g = Ikf, f E LP,1 < p < n/k. Then 

1 f (Aeyg)(x) 1 R~ (~'~g)(x) 
(4.5) f ( x ) -  dn,e(k)R,~ lyln+k dy = dn,m(k) ~ lyln+k dy 

where fR~ = lime-~0 fM>e" This limit exists in the LP-norm and in the a.e. 
sense. For f E Co N L p, it exists in the sup-norm. 

COROLLARY 4.2: In assumptions of Theorem 4.1, the k-plane transform ~ = ] 
can be inverted by 

1 / (Aey¢)(x) 1 ~ (/~n~5)(x). 
(4.6) Ck,nf(x)- dn,e(k) [yln+k dy = • re(k) ~ ay. 

~ n  

Remark 4.3: Let us compare (4.6) with the known formula 

(4.7) f = cAk(]) v 

(see formula (3.12) in [So]) where 

n 

(4.8) A--- Z RjOj, (Rj¢)(x) = a--~2 P.V. / ~ yj ¢ ( x -  y)dy, 
j = l  R,~ 

Oj = O/Oxj. Operators Rj are called the Riesz transforms. They are understood 
in the Cauchy principal value sense and bounded on L p for 1 < p < c~ [Ne, 
p. 101]. 

The following advantages of (4.6) are worth noting. The function f is ex- 
pressed by (4.6) through the only one singular integral which is understood in 
the usual sense for sufficiently good f. The formula (4.7), unlike (4.6), con- 
tains (apart from derivatives) nk singular integral operators Rj, the LP-theory 
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of which is much more sophisticated than that of (4.5), and does not include 
the L 1 case. 

Remark 4.4: (i) The set of continuous functions 

(4.9) Ca = { f :  f e C(]~n), f ( x )  ---- O(Ixl -a)} ,  a > 0, 

is contained in L ~ for n /a  < p < n /k .  Hence (4.5) and (4.6) are applicable to 

f E C a ,  a > k .  

(ii) Instead of (4.5) one can use many other inversion formulae for Riesz 

potentials which can be found in [Rul]. If f ( x )  - 0 for Ixl > R > 0, it suffices 

to determine ¢(x) for Ixl < R only. Then we get 

ck,n / f ( y )dy  
~ ( k )  I x -  yl ~-k - ¢(x),  Ixl < R. 

lYI<R 

Equations of this type play an important role in mixed boundary value problems 

of mathematical physics (in particular, in mechanics). They can be solved 

explicitly, but inversion formulae are more complicated than those for potentials 

on En. The interested reader is referred to [Rul, Chapter 7] for details. 

3.1.2. Powers of "minus Laplaeian". Another series of inversion formulae can 

be obtained using integer powers of "minus Laplacian". 

De~nition 4.5: For A • (0, 1), let Lip~ °c be the space of functions f ( x )  on 

~n having the following property: for each finite domain f~ C ~ n  there is a 

constant A > 0 such that 

(4.10) I f(x)  - f (y ) l  < A I x -  yl ~ Vx, y • • (theclosureoff~). 

We denote 

(4.11) C a = { f : f e C a N L i p ~  °c for someAe(0 ,1 )} .  

THEOREM 4.6: Let qo = ], 1 < k < n - 1. 

(i) For k even, a > k, and f E C a, we have 

(4.12) ck,nf(x)  = ( -A)k /2• (x ) .  

(ii) For k odd, the following statements hold. 

(a) I f  f E Ca, a > k, then 

! (4.13) ck , J ( x )  = ~ lyl,-+. )(k-1)/2¢(x - dy Y) 



(4.14) 

Furthermore, 

(4.15) 
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where f~ .  = lim~_~o fl~l>e uniformly in x 6 ]~n. 

(b) I f  f 6 C~, a > k, and h is the operator (4.8), then 

Ck,nf(x) ---- (A(--A)(k-1)/2~)(X).  

Ck,nf(X) = --  ( - A ) ( k - 1 ) / 2  (11A~5)(x) 

i f3  < k < n -  1, f 6 C~, a > k, and 

(4.16) ck,nf(x)  = (--A) (k+1)/2 (11¢)(x) 

i f1  < k < n - 2 ,  f ECa,  a > k +  l. 

All derivatives in (4.12)-(4.16) exist in the classical sense. 

Isr.  J.  Math .  

Proof'. These statements are consequences of known facts for potentials and 
- 1  v singular integrals. In the following, according to (3.7), we denote g = ck,n~ so 

that  g = I k f . 

(i) To "localize" the problem, let x 6 BR = {x : Ixl < R} and choose 
)~(x) 6 C a so that 

0 < X(x) < 1, X(x) _ 0 if Ixl R + 1, and )~(x) - 1 if Ixl k R + 2. 

We have f = f l  + f2, f l  -- )if,  f2 = (1 - )c)f, 

(4.17) f l ( x ) =  { 0  iflxl < R + I ,  { f ( x )  iflxl < R + I ,  
f ( x )  if Ixl > n + 2, f (z) = 0 if Ixl _ R + 2 

Let g = gl +g2,g l  = Ik f l ,g2  = Ikf2.  Then gl 6 C ~ ( B R ) ,  and for all multi- 
indices 7, 1 / 

O'~gl(X) -- "7n(k) fl(Y)O~lX -- Ylk-ndy" 

lyi>R+l 

In particular, for k even, we get (-A)k/2gl(X) = 0. The function g2 belongs at 

least to C k-1 (BR), and differentiation is possible under the sign of integration; 
see, e.g., [Vt, Section 1(6)]. Hence, for k even, ( -A) (k -2 ) /2g  2 = I2]2 (the 

Newtonian potential over a finite domain), and (i) follows by Theorem 11.6.3 
from [Mi2, p. 231]. 

(ii) Consider the case k odd. By reasoning from above, 

( 4 . 1 8 )  (--A )(k-1)/2 g(x) = (Il f)(x), 
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and (4.13) holds owing to Remark 4.4(i). In order to prove (4.14) we note that  

~oj - cgjIlf = R j f  (see (4.8)) where R j f  • Lip~ °c for some A • (0, 1) [Mil, 

pp. 59, 46]. Since f • L p for max(l ,  n/a) < p < n/k ,  and Rj is bounded on L p, 
then ~oj • Lip~, °c ALp. Let us consider Rj~aj. As in (4.17), we define ~ay,1 and 

~j,2 so that  ~oj = ~y,l + ~j,2, 

, _ ~ , .  , ,  , ( R j ~ j ~ ( x ~  2 f , ,  55 - vj 
J I x - -  dy 

Ivl>n+l 

2 f xj -- yj 
+ --an P.V. j ~j,2(y) i x -  ylg-4, dy. 

M<R+2 

The first term • C°°(BR) while the second one is Lip~ in BR (use Theorem 1.6 

from [Mil, p. 46]). Since R can be arbitrary large and Rj is bounded on L p, 
then Rj~oj = R~ f • Lip~ °c AL p. By taking into account that  ~ j  R2 f = f [Ne], 

owing to (4.18), we obtain 

f (x)  = = Vx • m s 

J J 

This gives (4.14). 

If k _> 3 then, as in (i), we have - A g  = Ik -2 f .  Hence - I 1 A g  = Ik -~ f ,  and 

(4.15) follows. To prove (4.16) we note that  for f E Ca, a > k + 1 and k + 1 < n, 

one can write I lg = I l Ikf .  = Ik+lf .  Since f satisfies some Lipschitz condition 

the argument from (i) is applicable, and we are done. | 

Remark 4.7: If f e LP,1 < p < n/k ,  all formulae (4.12)-(4.16) remain true 

with the following changes: (a) The corresponding derivatives are understood 

in the sense of $ '  or @' distributions. They also exist in a certain Lq-norm for 

almost all x; see [St, Chapter VIII] about this notion of differentiation. (b) In 

(4.16) we have to assume 1 < p < n/(k  + 1) (otherwise I lg  may be divergent). 

(c) Convergence of the hypersingular integral (4.13) is interpreted in the L p- 

norm or in the a.e. sense. 

4.2. THE CASE c~ = 0,~ = - k .  In this case (4.1) reads 

(4.19) = , i - k  , v  ck,nf (n_k~o) , ~O(T) : ](r) -- ](4, U), 

and one has to give precise sense to the operator In~ k acting in the u variable. 

The first way to do this is to use hypersingular integrals like (4.5) in the (n - k ) -  
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plane ~±. Let, for example, 

( A : ~ ) ( ( , x ) = E ( ~ ) ( - 1 ) J ~ ( ( , P r ¢ ~ x - j v ) ,  
j=o 

x E ~n, v E (-I-, dn-k,e(k) = / (1-Ty_~ eim )edy' 
Rn-k 

where e = k for k odd, and Y£ > k for k even; cf. (4.3). 

THEOREM 4.8: If  ~ = ], f E L p, 1 <_ p < n/k ,  then 

1 / (Ae~)((,X)d~d v 
(4.20) Ck,,~f(x) -- d~-k,e(k) Iv] '~ 

~n,k 

G,~,k {v:vc¢±,lvt>~} 

X) dv. 

The limit (4.21) exists in the LP-norm and in the a.e. sense. If  f E Co M Lp for 

some 1 < p < n/k ,  this limit is uniform in x E R n • 

This statement was obtained in [Ru2, Theorem 3.6] as a particular case of 

a more general result. Theorem 4.8 gives precise sense to the second formula 

in (1.4) for ] E L ~. In order to interpret this formula in terms of pointwise 

laplacians, one has to impose extra smoothness conditions on f (which are 

redundant for existence of ]) ,  and proceed as in Section 4.1.2. 

5. Invers ion  of  k-plane  t r a n s f o r m s .  T h e  m e t h o d  of  spher ica l  m e a n s  

The method of spherical means is alternative to that  of Section 4. It is based 

on the definition (2.25) and the following 

LEMMA 5.1: Let 

(5.1) (Mtf)(x) = Orn-ll f f(x + tO)dO, t > O, 
Sn-1 

be the spherical mean o f f .  I f  f E L p, 1 < p < n/k ,  then 

(5.2) 

oo 
(])V(x) : O'k_ 1 / ( M d ) ( x ) ( t  2 - r2)k/2-1tdt. 

r 
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Proof." Let I~(Y) = f ( x + y ) .  For any fixed T 6 G~,k such that ITI = r, we have 

so(~) so(n) 

f f 
so(n) so(n) 

It remains to make use of the Abel type representation (2.6). 

For p -- ] ,  we denote 

(5.3) g~(s) = (MvJ)(x) ,  ¢~(s) = ~-k /2%~(x) .  

Then (5.2) reads 

(5.4) (Ik_/2g~)(s) = ¢~(s) 

(see notation (1.6)). If I is continuous and decays sufficiently fast at infinity 

then (5.4) can be easily inverted, and we get 

(5.5) I(x) = ( -  (i_ vm N, m > k/2. d m m--k~2 I 

This formula is inapplicable for generic f E L p because the integral 

(~-k/2¢~)(s)  = (~g~)(s) 
(5.6) 2 / 

- F(m)an_l  je(x - y)(lyl 2 - 8) m-1 dy lyV--2 
M2>s 

can be divergent for n / 2 m  <_ p < n /k .  Thus the main difficulties axe connected 

with behavior of functions at infinity, and the inversion procedure should not 

increase the order of the fractional integral (5.4). For k > 1, the order can be 

reduced by differentiation in the s-variable according to the following 

LEMMA 5.2: Let gx(s) = ( M v ~ f ) ( x ) ,  f E L p. 

(i) I f1  < p < n - 1 then -d(P_g~)(s)ls=o = f ( x ) ,  the derivative being well 

de/ined in the LP-norm and for almost all x. 

(ii) I f  a > 1 then for each s > 0, --d(Ia_gx)(s)  I "-1 s = ( - gx)( ) where dif- 

ferentiation is understood for almost all x or in the Lq-norm, 0 <__ 1/q < 

1 / p -  2(c~ - 1)/n.  
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(iii) I f  f e Co ~ L  p then derivatives in (i) and (ii) exist for all x in the classical 
sense. 

Proo£" (i) A s tandard  machinery  of  approximat ion  to  the identi ty [St, Chapte r  

III, Sec. 2] yields 

(II_ g~)(5) - (II_ gx)(O) 1 / 
= ~ (]~4vqf)(x)ds 

o 

2 f f ( x -  v/~y) dy ~n-1 ~ -~ I (x)  as ~ -~  0 

lyl<i 

in the required sense. The  condit ion p < n - 1 is necessary for the existence of 

I lgx; cf. (5.6). 

(ii) We note  tha t  (I~_-lgx)(s), a > 1, exists in the Lebesgue sense if and only 

if 1/p > 2(a  - 1)/n. Fur thermore ,  for each s > 0, 

1 1 2(a  - 1) 
(5.7) II(I~--lg(.))(s)llq < csl lf l l , ,  o < - < q p n 

To see this one should replace m by a - 1 in (5.6) and make use of Young's 

inequality. Our  aim is to  show tha t  

(L~gx)(s) - (I_~gx)(s + 5) 
- -  (I~_-lgx)(s) 

tends to  0 as 5 --+ 0 in the required sense. This  expression can be wri t ten  as a 

convolut ion f * h~,s where 

5 
hs,s(x) = A~(x)h(ix]2 _ s ) '  

As(x) = 2 (Ix[2 - s)~--2, h(t) = 1 - (1 - t)~_ -1 _ 1. 
o n _ , r ( ~  - 1) Ixl n ~ t ( , ~ -  1) 

The  funct ion h(t) is bounded  and limt-+o h(t) = 0. Since 

If * hs,sl <. [Ih[[oo[]f[ * As[ 

and the convolut ion Ifl * As obeys the same est imate  (5.7), by the Lebesgue 

theorem on domina ted  convergence we have 

a . e .  

]imo(f * h~,s)(x) -- 0, lim [[f * h~,s[tq = 0 
5--~0 
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for each s > 0 and q satisfying (5.7). 

The proof of (iii) follows the same lines. | 

Application of Lemma 5.2 to (5.4) gives the following 

Let ~(7-) = ](T), 7 E 6~,k. If f E L p, 1 <_ p < n/k,  then for 

a.e. 7r_k/2( 1 d \k/2 I (5.8) f (x)  2r )  r(x)L0 
where ~r(x) is the average of ~(v) over all k-planes T at distance r from x. If 
f E Co N L p then (5.8) holds for all x E I~ n • 

Let us consider arbitrary 1 < k < n - 1. As we have already seen, fractional 

differentiation of (5.4) in the Riemann-Liouville sense blows up. To resolve the 

problem we use the Marchaud fractional derivative 

1 j[~_.o(~ ) ] dt (5.9) (IDa--~)(s)- ~e(a) ( -1 )J~(s+j t )  t-y-#--j, g > a ,  

0 

see [Rul, SKM]. Here 

O O  

~ ( a )  = / ( 1  - 
g b  

e-t)~t- l-adt  

o 

e ~ j ' a  . .  F ( - a )  E j = I ( j ) ( - 1 ) 2  , a ¢ 1 , 2 ,  . , # - 1 ,  

= ~ [-1:: + " z ~ : , O ( - 1 ) y j a l ° g j ,  a = l , 2 , . . . , e - 1 .  

Owing to normalization, I~_ ~ is independent of ~ > a. The right-hand side of 

(5.9) is understood as a limit of the truncated integral 

1 y [ ~  ( : )  ] d t  
(5.10) (Da-'e~)(s)- ~e(a) ( -1 )J~(s+j t )  t l+a 

as c -+ 0 in the appropriate sense. 

THEOREM 5.4: Let ~ = ], f E L p, 1 <_ p < n/k.  For any g > k/2, 

(5.11) f ( x ) -  ae(k/2) 0 - (-1)J~v~7(x) tl+k/2 

where f o  = limE-~0 f ~  in the LP-norm and in the a.e. sense. If f e Co FI L p 
this limit exists in the sup-norm. 

COROLLARY 5.3: 

k even, 
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Remark 5.5: The right-hand side of (5.11) represents the Marchaud derivative 

of order k/2 of the function Cx(s) (see (5.3)) evaluated at s = 0. The formula 

(5.11) is applicable to all 1 < k < n - 1. For k = 1 (the X-ray case), (5.11) has 

an especially simple form 

(5.12) 

Proof." 

oo 
1 / ¢(x) - ~r(X)dr. 

l (x)  = ~ r2 
0 

For a = k/2, according to (5.4) we have 

/o E (-1)J(I~g~)(Jt) = t~ k(u)gx(ut)du, 
j=0 

1 ~-~(~) -3)+ • k(u) = F(a) (_ l ) J (u  . , - 1  
j=O 

This gives 

(5.13) 
~0 °° 

(]I~_,6¢x)(0) = (~_,~I~_gx)(O) = At,,(rl)gx(¢rl)d~, 

t 

j=O 

It is known [Rul, Lemma 10.17] that  

/o { (5.14) A t , . ( ~ ) d ~ = l ,  .~t,.(~) = 0(~/"-1) 
0(?7 a - ~ - I  ) 

i f y  < 1, 
i f ~ >  1. 

Since gx(s) = (~4v-/f)(x), then 

(5.15) 

o o  

(D~-'~¢~)(O) - an-,1 /At,c~O?)&l / f(x + v'~O)dO 
0 S,~ -1 

f 2~e,~(ly?) = f (x+v~y)Ae , , (y )dy ,  A e , , ( y ) -  an_llyln_2. 
R~ 

By (5.14), this is an approximate identity, and the result follows. | 

COROLLARY 5.6: Let~  = ], f • L p, 1 <_ p < n/k.  I fk i soddandm = ( k - l ) / 2  
then the derivative 

l d  m 
hx(r)= ( 2rdr)  ~Sr(x) 
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exists for almost all x, and all r >_ O. 

formula 

The function f can be recovered by the 

(5.16) 
oo oo oo 

f ( x )  -- zc(k+l)M ~ dr, = 6-~o J 
o o e 

I f  f E Co n L p the integral (5.16) converges uniformly in x E ~n. 

Proof: By Lemma 5.2(ii), the equality (5.4) yields 

(11__/2g x ( d )m~9  d e f  )(s) ..e..-k/: _ .z(x) = h.( . ) ,  

and therefore 

o o ~  '~  

(]I)l_(~hz)(0) - 27rl/2 = f ( x  + v~y)AI,1/2(y)dy, 

cf. (5.15). This implies (5.16). [ 
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